首页> 外文OA文献 >Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations
【2h】

Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations

机译:稳定配方的正确能量演变:关系   Vms,sUpG和GLs之间通过动态正交小尺度和   等几何分析。 II:不可压缩的Navier-stokes方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the construction of a correct-energy stabilized finiteelement method for the incompressible Navier-Stokes equations. The framework ofthe methodology and the correct-energy concept have been developed in theconvective-diffusive context in the preceding paper [M.F.P. ten Eikelder, I.Akkerman, Correct energy evolution of stabilized formulations: The relationbetween VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometricanalysis. The convective-diffusive context, CMAME, Accepted 2018]. This workextends ideas of this paper to build a stabilized method within the variationalmultiscale (VMS) setting which displays correct-energy behavior. Similar to theconvection-diffusion case, a key ingredient is the proper dynamic andorthogonal behavior of the small-scales. This is demanded for correct energybehavior and links the VMS framework to the streamline-upwind Petrov-Galerkin(SUPG) and the Galerkin/least-squares method (GLS). The presented method is a Galerkin/least-squares formulation with dynamicdivergence-free small-scales (GLSDD). It is locally mass-conservative for boththe large- and small-scales separately. In addition, it locally conserveslinear and angular momentum. The computations require and employ NURBS-basedisogeometric analysis for the spatial discretization. The resulting formulationnumerically shows improved energy behavior for turbulent flows comparing withthe original VMS method.
机译:本文提出了不可压缩的Navier-Stokes方程的正确能量稳定有限元方法的构造。在对流扩散背景下,[M.F.P。十Eikelder,I.Akkerman,《稳定配方的正确能量演化:通过动态正交小尺度和等几何分析,VMS,SUPG和GLS之间的关系》。对流扩散环境,CMAME,2018年接受]。这项工作扩展了本文的思想,以便在可变多尺度(VMS)设置内构建稳定的方法,该方法显示正确的能量行为。与对流扩散情况类似,关键因素是小尺度的适当动态正交行为。这是正确的能源行为所必需的,并将VMS框架与顺风向上的Petrov-Galerkin(SUPG)和Galerkin /最小二乘法(GLS)链接在一起。提出的方法是具有无动态散度的小尺度(GLSDD)的Galerkin /最小二乘公式。无论是大范围还是小规模,它在本地都是节省资源的。此外,它局部保留线性和角动量。这些计算需要并将基于NURBS的等几何分析用于空间离散化。与原始的VMS方法相比,所得公式从数值上显示了湍流能量特性的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号